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Chapter 5: Differentiation II

Learning Objectives:
(1) Use implicit differentiation to find slope.
(2) Discuss inverse function and its derivatives.
(3) Study the higher order derivative.

5.1 Differentiating Implicit Functions and Inverse Functions

5.1.1 Implicit functions

Example 5.1.1. Consider the circle on the x − y plane defined by x2 + y2 = 25. Find the
equation of the tangent line to the circle at (3, 4).

Solution. Method 1. Express y in terms of x explicitly.

x2 + y2 = 25 ⇒ y = ±
√

25− x2,

Restrict to a small neighbourhood of the point (3, 4) on the curve, y > 0 can be uniquely
given by y =

√
25− x2.

5-1
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So,
y′ = − x√

25− x2

when x = 3, y′ = −3
4 . The equation of the tangent line to the curve at (3, 4) is

y − 4 = −3

4
(x− 3),

y = −3

4
x+

25

4
.

Method 2. Implicit differentiation.

Regard y as a function y(x) without explicit formula. Differentiate both sides of x2+y2 =
25 with respect to x, and then solve algebraically for dy

dx .

2x+
d

dx
(y2) = 0

2x+ 2y
dy

dx
= 0 (chain rule)

dy

dx
= −x

y

So,
dy

dx

∣∣∣∣
(3,4)

= −3

4
.

Then, find the tangent line in the same way as with Method 1.

�

Remark. Method 2 is referred to as implicit differentiation, which is very useful to compute
derivatives of functions not defined by explicit formulae.

Example 5.1.2. Let y = f(x) be a differentiable function of x that satisfies the equation

x2y + y2 = x3. Find the derivative
dy

dx
as a function of both x and y.

Solution. You are going to differentiate both sides of the given equation with respect to x.
So that you will not forget that y is actually a function of x, temporarily use the alternative
notation f(x) for y, and begin by rewriting the equation as

x2f(x) + (f(x))2 = x3.
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Now differentiate both sides of this equation term by term with respect to x:

d

dx
[x2f(x) + (f(x))2] =

d

dx
[x3]

;

[
x2
df

dx
+ f(x)

d

dx
(x2)

]
+ 2f(x)

df

dx
= 3x2.

(5.1)

Thus, we have

x2
df

dx
+ f(x)(2x) + 2f(x)

df

dx
= 3x2

; [x2 + 2f(x)]
df

dx
= 3x2 − 2xf(x)

;
dy

dx
=

3x2 − 2xf(x)

x2 + 2f(x)
.

(5.2)

Finally, replace f(x) by y to get
dy

dx
=

3x2 − 2xy

x2 + 2y
.

�

Remark. By default, dydx is regarded as a function of x, and we want an expression for dy
dx in

terms of x only. However, sometimes it is difficult to express y in terms of x explicitly. In this
case it’ll be specified in the test or homework question that it is ok to leave the answer for y′

as a function of both x and y. Or, sometimes finding the value for y′ is only an intermediate
step in solving the problem. If the values of x and y are known, one may directly plug in
these values to the expression of y′ in x and y, without going through an explicit formula for
y′ in x.

Summary: Carrying out Implicit Differentiation

Suppose an equation defines y implicitly as a differentiable function of x. To find
dy

dx
:

1. Differentiate both sides of the equation with respect to x. Remember that y is really a
function of x, and use the chain rule when differentiating terms containing y.

2. Solve the differentiated equation algebraically for
dy

dx
in terms of x and y.

Example 5.1.3. Consider the curve defined by

x3 + y3 = 9xy.

1. Compute
dy

dx
. (It is ok to leave the answer as a function of both x and y.)

2. Find the slope of the tangent line to the curve at (4, 2).
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Figure 5.1: A plot of x3 + y3 = 9xy. While this is not a function of y in terms of x, the
equation still defines a relation between x and y.

Solution. Starting with
x3 + y3 = 9xy,

we apply the differential operator
d

dx
to both sides of the equation to obtain

d

dx

(
x3 + y3

)
=

d

dx
9xy.

Applying the sum rule, we see that

d

dx
x3 +

d

dx
y3 =

d

dx
9xy.

Let’s examine each of the terms above in turn. To begin,

d

dx
x3 = 3x2.

On the other hand,
d

dx
y3 is treated somewhat differently. Here, viewing y = y(x) as an

implicit function of x, we have by the chain rule that

d

dx
y3 =

d

dx
(y(x))3

= 3(y(x))2 · y′(x)

= 3y2
dy

dx
.
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Consider the final term
d

dx
(9xy). Regarding y = y(x) again as an implicit function, we have:

d

dx
(9xy) = 9

d

dx

(
x · y(x)

)
= 9

(
x · y′(x) + y(x)

)
= 9x

dy

dx
+ 9y.

Putting all the above together, we get:

3x2 + 3y2
dy

dx
= 9x

dy

dx
+ 9y.

Now we solve the preceding equation for
dy

dx
. Write

3x2 + 3y2
dy

dx
= 9x

dy

dx
+ 9y

⇐⇒ 3y2
dy

dx
− 9x

dy

dx
= 9y − 3x2

⇐⇒ dy

dx

(
3y2 − 9x

)
= 9y − 3x2

⇐⇒ dy

dx
=

9y − 3x2

3y2 − 9x
=

3y − x2

y2 − 3x
.

For the second part of the problem, we simply plug in x = 4 and y = 2 to the last

formula above to conclude that the slope of the tangent line to the curve at (4, 2) is
5

4
. See

Figure 5.2. �

Example 5.1.4. Let L be the curve in the x− y plane defined by x2 + y2 + exy = 2. Use L
to implicitly define a function y = y(x). Find y′(x) at x = 1 and the tangent line to the curve
L at (1, 0).

Solution. (Note: In this case, there is no good explicit formula for the function y(x).)
Differentiate the equation x2 + y2 + exy = 2 on both sides with respect to x. We get:

2x+ 2yy′ + exy(y + xy′) = 0,

; y′ = −2x+ exyy

2y + exyx
.

So, y(1) = 0 and y′|x=1) = −2.
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Figure 5.2: A plot of x3 + y3 = 9xy along with the tangent line at (4, 2).

Thus, the equation of the tangent line to L at (x, y) = (1, 0) is:

y − 0 = −2(x− 1), or

y = −2x+ 2.

�

5.1.2 Differentiating Inverse Functions

Definition 5.1.1. Consider a function f : A → B, where A is the domain, and B is the
codomain.

The function f is said to be injective if f(x1) 6= f(x2) whenever x1 6= x2 for any
x1, x2 ∈ A. The function f is said to be surjective or onto if ∀y ∈ B, ∃x ∈ A such that
f(x) = y. (In this case, the codomain B of f agrees with the range of f .) The function f is
said to be bijective or one to one if it is both injective and surjective.

If f is one-to-one, then the inverse function, denoted f−1 : B → A, is defined by

x = f−1(y) if y = f(x).

Remark.

1. Only a one-to-one function can have an inverse.
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2. The domains and codomains(=ranges) of f and f−1 are interchanged.

3. f−1(x) is not
1

f(x)
.

4.

(f−1 ◦ f)(x) = x, for all x in the domain of f

(f ◦ f−1)(y) = y, for all y in the domain of f−1 (or range of f)

Example 5.1.5.

1. {
y = ex,

x = ln y.
x ∈ R, y > 0

are inverse functions of each other.

2. {
y = x2,

x =
√
y.

x > 0, y > 0

are inverse functions of each other.

3. y = x2, x ∈ R, y ≥ 0 does not have inverse function because it is not one-to-one.

Question: What is the relation between derivatives of inverse functions?

Suppose y = f(x) has an inverse function, then

x = f−1(f(x)).
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Differentiate both sides with respect to x to get:

1 = (f−1)′(y) · f ′(x)

⇐⇒

(f−1)′(y) =
1

f ′(x),

or equivalently,
dx

dy
=

1
dy
dx

.

Example 5.1.6. Use the identity
d

dx
ex = ex to show that

d

dx
lnx =

1

x
.

Solution. Let y = f(x) = lnx. Then its inverse function is x = ey.

dy

dx
=

d

dx
lnx =

1
dx
dy

=
1

ey
.

Express the right hand side in terms of x, we have

d

dx
lnx =

1

x
.

Or, using implicit differentiation: Differentiate the equation x = ey on both sides with respect
to x. We get:

1 =
d

dx
(ey) = ey · dy

dx
(the chain rule)

⇒ dy

dx
=

d

dx
lnx =

1

ey
=

1

x
.

�

Example 5.1.7. Show that
d

dx

√
x =

1

2
√
x
.

Solution. Let y =
√
x, then x = y2. We have:

d
√
x

dx
=
dy

dx
=

(
dx

dy

)−1
=

1

2y
.
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Expressing the right hand side in terms of x, we have

d
√
x

dx
=

1

2
√
x
.

�

Example 5.1.8. Let f : R→ R be defined by f(x) = x3 + 4x.

1. Find
d

dx
f−1(x) without writing down an explicit formula for f−1(x).

2. Find
d

dx
f−1(x)

∣∣∣∣
x=5

.

Solution.

1. Let y = f−1(x), i.e., x = f(y). Then

dy

dx
=

1

f ′(y)
=

1

3y2 + 4
.

Alternatively, differentiate both sides of the equation x = y3 + 4y with respect to x,
regarding x now as an implicit function of y. We get:

dx

dy
= 3y2 + 4 ⇒ dy

dx
=

1
dx
dy

=
1

3y2 + 4
.

2. When x = 5, y = f−1(5) = 1. (Check that f(1) = 5!) So,

d

dx
f−1(x)

∣∣∣∣
x=5

=
1

3y2 + 4

∣∣∣∣
y=1

=
1

7
.

�

5.2 Higher Order Derivatives

Suppose that an object is moving along a coordinate line, and let t denote the time.
parametrized by t. Let

s = s(t)
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denote the coordinate of the object at time t. The velocity (or “instantaneous velocity”) of
the object at time t is:

v(t) = s′(t).

The acceleration of the object at time t is:

a(t) = v′(t) = s′′(t).

Notation Let y = f(x).

1st derivative of f :
dy

dx
=
df

dx
= f ′(x)

2nd derivative of f :
d2y

dx2
=
d2f

dx2
= f

′′
(x)

...
...

n-th derivative of f :
dny

dxn
=
dnf

dxn
= f (n)(x)

Example 5.2.1.

1.
dn

dxn
(ex) = ex,

dn

dxn
(ax) = ax · (ln a)n.

2. y = xn, n ∈ N.

y(m) =


n(n− 1)(n− 2) · · · (n−m+ 1)xn−m, if m < n,

n(n− 1)(n− 2) · · · 2 · 1 = n!, if m = n,

0, if m > n.

Example 5.2.2. Let y be defined implicitly by the equation x2 + y2 + exy = 2. Find y′ and
y′′ at x = 1.

Solution. Differentiate both sides of the preceding equation with respect to x to get

2x+ 2yy′ + exy(y + xy′) = 0. −−−−(1)

Then differentiate both sides of the equation with respect to x one more time to get

2 + 2y′y′ + 2yy′′ + exy(y + xy′)2 + exy(2y′ + xy′′) = 0. −−−−(2)
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Inserting x = 1, y = 0 into Equations (1), (2), we have:

y′|x=1 = −2,
y′′|x=1 = −10.

�

Example 5.2.3. Suppose that y = eλx satisfies y′′ − 2y′ − 3y = 0 (a “differential equation”).
Find the constant λ.

Solution. y = eλx implies that y′ = λeλx, which in turn implies y′′ = λ2eλx.

Combining the preceding identities with the equation y′′ − 2y′ − 3y = 0, we have:

(λ2 − 2λ− 3)eλx = 0.

Since eλx 6= 0 for all x,
λ2 − 2λ− 3 = 0,→ λ = −1, 3.

�

More generally, if y = eλx solves

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0,

then
(anλ

(n) + an−1λ
(n−1) + · · ·+ a1λ+ a0)e

λx = 0,

⇒
anλ

(n) + an−1λ
(n−1) + · · ·+ a1λ+ a0 = 0.

Exercise 5.2.1. Find constants λ such that y = eλx satisfies y′′′ − 2y′′ − 3y′ = 0.
Answer: λ = −1, 0, 3.


